领域驱动设计DDD

领域驱动设计DDD

文章目录

  !版权声明:本博客内容均为原创,每篇博文作为知识积累,写博不易,转载请注明出处。

参考地址:

软件架构模式的演进

这些年来随着设备和新技术的发展,软件的架构模式发生了很大的变化。软件架构模式大体来说经历了从单机、集中式到分布式微服务架构三个阶段的演进。随着分布式技术的快速兴起,我们已经进入到了微服务架构时代。

软件架构模式演进的三个阶段大体如下:

第一阶段是单机架构: 采用面向过程的设计方法,系统包括客户端 UI 层和数据库两层,采用 C/S 架构模式,整个系统围绕数据库驱动设计和开发,并且总是从设计数据库和字段开始。

第二阶段是集中式架构: 采用面向对象的设计方法,系统包括业务接入层、业务逻辑层和数据库层,采用经典的三层架构,也有部分应用采用传统的 SOA 架构。这种架构容易使系统变得臃肿,可扩展性和弹性伸缩性差。

第三阶段是分布式微服务架构: 随着微服务架构理念的提出,集中式架构正向分布式微服务架构演进。微服务架构可以很好地实现应用之间的解耦,解决单体应用扩展性和弹性伸缩能力不足的问题。

在单机和集中式架构这两种模式下,软件无法快速响应需求和业务的迅速变化,最终错失发展良机。此时,分布式微服务的出现就有点恰逢其时的意思了。

微服务设计和拆分的困境

那进入微服务架构时代以后,微服务确实也解决了原来采用集中式架构的单体应用的很多问题,比如扩展性、弹性伸缩能力、小规模团队的敏捷开发等等。

但在看到这些好处的同时,微服务实践过程中也产生了不少的争论和疑惑:微服务的粒度应该多大呀?微服务到底应该如何拆分和设计呢?微服务的边界应该在哪里?

可以说,很久以来都没有一套系统的理论和方法可以指导微服务的拆分,包括微服务架构模式的提出者 Martin Fowler 在提出微服务架构的时候,也没有告诉我们究竟应该如何拆分微服务。

于是,在这段较长的时间里,就有不少人对微服务的理解产生了一些曲解。有人认为:“微服务很简单,不过就是把原来一个单体包拆分为多个部署包,或者将原来的单体应用架构替换为一套支持微服务架构的技术框架,就算是微服务了。” 还有人说:“微服务嘛,就是要微要小,拆得越小效果越好。”

但我想,这两年,你在技术圈中一定听说过一些项目因为前期微服务拆分过度,导致项目复杂度过高,无法上线和运维。

综合来看,我认为微服务拆分困境产生的根本原因就是不知道业务或者微服务的边界到底在什么地方。换句话说,确定了业务边界和应用边界,这个困境也就迎刃而解了。

如何解决拆分困境

2004 年埃里克·埃文斯(Eric Evans)发表了《领域驱动设计》(Domain-Driven Design –Tackling Complexity in the Heart of Software)这本书,从此领域驱动设计(Domain Driven Design,简称 DDD)诞生。DDD 核心思想是通过领域驱动设计方法定义领域模型,从而确定业务和应用边界,保证业务模型与代码模型的一致性。

但 DDD 提出后在软件开发领域一直都是“雷声大,雨点小”!直到 Martin Fowler 提出微服务架构,DDD 才真正迎来了自己的时代。

有些熟悉 DDD 设计方法的软件工程师在进行微服务设计时,发现可以利用 DDD 设计方法来建立领域模型,划分领域边界,再根据这些领域边界从业务视角来划分微服务边界。而按照 DDD 方法设计出的微服务的业务和应用边界都非常合理,可以很好地实现微服务内部和外部的“高内聚、低耦合”。于是越来越多的人开始把 DDD 作为微服务设计的指导思想。

现在,很多大型互联网企业已经将 DDD 设计方法作为微服务的主流设计方法了。DDD 也从过去“雷声大,雨点小”,开始真正火爆起来。

为什么 DDD 适合微服务?

DDD 是一种处理高度复杂领域的设计思想,它试图分离技术实现的复杂性,并围绕业务概念构建领域模型来控制业务的复杂性,以解决软件难以理解,难以演进的问题。DDD 不是架构,而是一种架构设计方法论,它通过边界划分将复杂业务领域简单化,帮我们设计出清晰的领域和应用边界,可以很容易地实现架构演进。

DDD 战略设计和战术设计

什么是战略设计和战术设计

战略设计

战略设计主要从业务视角出发,建立业务领域模型,划分领域边界,建立通用语言的限界上下文,限界上下文可以作为微服务设计的参考边界。

战术设计

战术设计则从技术视角出发,侧重于领域模型的技术实现,完成软件开发和落地,包括:聚合根、实体、值对象、领域服务、应用服务和资源库等代码逻辑的设计和实现。

DDD 如何进行战略设计

DDD 战略设计会建立领域模型,领域模型可以用于指导微服务的设计和拆分。事件风暴是建立领域模型的主要方法,它是一个从发散到收敛的过程。它通常采用用例分析、场景分析和用户旅程分析,尽可能全面不遗漏地分解业务领域,并梳理领域对象之间的关系,这是一个发散的过程。事件风暴过程会产生很多的实体、命令、事件等领域对象,我们将这些领域对象从不同的维度进行聚类,形成如聚合、限界上下文等边界,建立领域模型,这就是一个收敛的过程。

我们可以用三步来划定领域模型和微服务的边界。

  • 第一步: 在事件风暴中梳理业务过程中的用户操作、事件以及外部依赖关系等,根据这些要素梳理出领域实体等领域对象。
  • 第二步: 根据领域实体之间的业务关联性,将业务紧密相关的实体进行组合形成聚合,同时确定聚合中的聚合根、值对象和实体。在这个图里,聚合之间的边界是第一层边界,它们在同一个微服务实例中运行,这个边界是逻辑边界,所以用虚线表示。
  • 第三步: 根据业务及语义边界等因素,将一个或者多个聚合划定在一个限界上下文内,形成领域模型。在这个图里,限界上下文之间的边界是第二层边界,这一层边界可能就是未来微服务的边界,不同限界上下文内的领域逻辑被隔离在不同的微服务实例中运行,物理上相互隔离,所以是物理边界,边界之间用实线来表示。

有了这两层边界,微服务的设计就不是什么难事了。

在战略设计中我们建立了领域模型,划定了业务领域的边界,建立了通用语言和限界上下文,确定了领域模型中各个领域对象的关系。到这儿,业务端领域模型的设计工作基本就完成了,这个过程同时也基本确定了应用端的微服务边界。

在从业务模型向微服务落地的过程中,也就是从战略设计向战术设计的实施过程中,我们会将领域模型中的领域对象与代码模型中的代码对象建立映射关系,将业务架构和系统架构进行绑定。当我们去响应业务变化调整业务架构和领域模型时,系统架构也会同时发生调整,并同步建立新的映射关系。

DDD 与微服务的关系

DDD 是一种架构设计方法,微服务是一种架构风格,两者从本质上都是为了追求高响应力,而从业务视角去分离应用系统建设复杂度的手段。两者都强调从业务出发,其核心要义是强调根据业务发展,合理划分领域边界,持续调整现有架构,优化现有代码,以保持架构和代码的生命力,也就是我们常说的演进式架构。

DDD 主要关注: 从业务领域视角划分领域边界,构建通用语言进行高效沟通,通过业务抽象,建立领域模型,维持业务和代码的逻辑一致性。

DDD 主要关注: 从业务领域视角划分领域边界,构建通用语言进行高效沟通,通过业务抽象,建立领域模型,维持业务和代码的逻辑一致性。

如何理解领域和子域?

汉语词典中对领域的解释

“领域是从事一种专门活动或事业的范围、部类或部门。”百度百科对领域的解释:“领域具体指一种特定的范围或区域。”

两个解释有一个共同点——范围。对了!领域就是用来确定范围的,范围即边界,这也是 DDD 在设计中不断强调边界的原因。

业务中的领域

在研究和解决业务问题时,DDD 会按照一定的规则将业务领域进行细分,当领域细分到一定的程度后,DDD 会将问题范围限定在特定的边界内,在这个边界内建立领域模型,进而用代码实现该领域模型,解决相应的业务问题。简言之,DDD 的领域就是这个边界内要解决的业务问题域。

领域的大小

既然领域是用来限定业务边界和范围的,那么就会有大小之分,领域越大,业务范围就越大,反之则相反。

领域可以进一步划分为子领域。我们把划分出来的多个子领域称为子域,每个子域对应一个更小的问题域或更小的业务范围。

使用例子描述领域

我们知道,DDD 是一种处理高度复杂领域的设计思想,它试图分离技术实现的复杂度。那么面对错综复杂的业务领域,DDD 是如何使业务从复杂变得简单,更容易让人理解,技术实现更容易呢?

其实很好理解,DDD 的研究方法与自然科学的研究方法类似。当人们在自然科学研究中遇到复杂问题时,通常的做法就是将问题一步一步地细分,再针对细分出来的问题域,逐个深入研究,探索和建立所有子域的知识体系。当所有问题子域完成研究时,我们就建立了全部领域的完整知识体系了。

聚合 ---

什么是聚合

在领域驱动设计中,聚合 (Aggregate) 是一个重要的概念,用于组织和管理一组相关的领域对象。它是一个聚合根 (Aggregate Root) 和一些相关的实体 (Entities) 和值对象 (Value Objects) 的集合。

什么是聚合根

聚合根是聚合中的一个主要对象,它是聚合的入口点和代表。聚合根负责保护和维护聚合内的完整性约束,并协调聚合内的对象之间的操作。聚合根拥有全局唯一的标识符,并通过公开的领域行为方法来定义聚合的业务逻辑。

聚合示例

下面是一个示例,假设我们正在开发一个电子商务应用程序,其中有订单 (Order) 和订单项 (OrderItem) 两个实体。在这个例子中,订单是聚合根,而订单项是聚合内的子对象。

 1public class Order {
 2    private String orderId;
 3    private List<OrderItem> orderItems;
 4
 5    public Order(String orderId) {
 6        this.orderId = orderId;
 7        this.orderItems = new ArrayList<>();
 8    }
 9
10    public void addOrderItem(OrderItem orderItem) {
11        // 添加订单项的逻辑
12        // ...
13    }
14
15    public void removeOrderItem(OrderItem orderItem) {
16        // 移除订单项的逻辑
17        // ...
18    }
19
20    // 其他领域行为方法和属性
21
22    // ...
23}
24
25public class OrderItem {
26    private String productId;
27    private int quantity;
28
29    public OrderItem(String productId, int quantity) {
30        this.productId = productId;
31        this.quantity = quantity;
32    }
33
34    // 其他属性和方法
35    // ...
36}

在这个例子中,订单是聚合根,负责维护订单项的完整性。通过在订单对象中定义添加和删除订单项的方法,我们可以确保订单项的操作遵循一致的业务规则,例如限制订单项的数量或检查产品的可用性等。

聚合根的边界还定义了事务的一致性边界,所有与聚合相关的操作应该在同一个事务内进行,以确保数据的一致性。


  !版权声明:本博客内容均为原创,每篇博文作为知识积累,写博不易,转载请注明出处。